Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

这次是kunneth formula, 以及kunneth formula的直接推论, 同调万有系数定理和上同调万有系数定理. 没有学过代数拓扑所以基本上是从直观角度理解这个几个定理: 上同调万有系数定理应用比较直观, 直接给出了homology和cohomology之间的计算以及转换关系. 同调万有系数定理我觉得是在说这样一件事: 在改变定义同调时使用的系数环的情况下同调会发生什么样的变化. 这几个定理的证明说简单也简单, 也就是导出长正合列之后计算的事, 但是说复杂也很复杂, 这几个kernel都不是人算的. 这应该是一辈子只需要证明一次的定理, 使用比证明更加重要. P.S. kunneth formula 的证明可能有一点bug.(;′⌒`)

We talk about RModR-\mathrm{Mod} in this section.

Universal Coefficient Theorem

Lemma 1. For a exact sequence 0MMM00\to M'\to M\to M''\to 0 and an object MM, if MM'' flat, then

1. 0MNMNMN00\to M'\otimes N\to M\otimes N\to M''\otimes N\to 0 exact.

2. MM is flat if and only if MM' is flat.

Proof

Proof. 1. We take a free presentation RnfNR^{n}\xrightarrow{f} N of NN and get the exact sequence 0KerfRnN00\to\mathrm{Ker}f\to R^{n}\to N\to 0. Then we tensor the exact sequence 0MMM00\to M'\to M\to M''\to 0 to it and obtain the following commutative diagram:

0M0¬KerfM¬KerfM00¬Kerf00M0¬RnM¬RnM00¬RnM0¬NM¬N00g

Each rows and columns are exact. By the snake lemma, gg is injective, thus 0MNMNMN00\to M'\otimes N\to M\otimes N\to M''\otimes N\to 0 exact.

  1. Take an injection f:NNf: N'\to N and tensor 0MMM00\to M'\to M\to M''\to 0, we have the following diagram

0M0¬N0M¬N0M00¬N000M0¬NM¬NM00¬N0®0®®00

Its rows exact by 1. If MM flat, α\alpha is injective thus α\alpha' injective, so MM' flat. If MM' flat, then α\alpha' is injective, from 5 lemma, α\alpha is injective, thus MM is flat. ◻

Theorem 1 (Universal Coefficient Theorem). For object MM and a chain complex PP, if PnP_{n} and Imdn=dn(Pn)\mathrm{Im}d_{n}=d_{n}(P_{n}) flat for any nn, then we have the following sequence exact

0HnPMHn(PM)Tor1(Hn1(P),A)00\to H_{n}P\otimes M\to H_{n}(P\otimes M)\to \mathrm{Tor}_{1}(H_{n-1}(P),A)\to 0

Proof

Proof. Notice that we have the exact sequence

0KerdnPnImdn00\to \mathrm{Ker}d_{n}\to P_{n}\to \mathrm{Im}d_{n}\to 0

Tensor MM on it, from the lemma above, we have exact sequence

0KerdnMPnMImdnM00\to \mathrm{Ker}d_{n}\otimes M\to P_{n}\otimes M\to \mathrm{Im}d_{n}\otimes M\to 0

It induces a short exact sequence of chain complex

0KerdMPMImdM00\to \mathrm{Ker}d\otimes M\to P\otimes M\to\mathrm{Im}d\otimes M\to 0

Use the long exact sequence theorem, since Hn(KerdM)=KerdnMH_{n}(\mathrm{Ker}d\otimes M)=\mathrm{Ker}d_{n}\otimes M, Hn(ImdM)=ImdnMH_{n}(\mathrm{Im}d\otimes M)=\mathrm{Im}d_{n}\otimes M, we have the long exact sequence

Imdn+1MKerdnMfHn(PM)ImdnMgKerdn1M\cdots\to \mathrm{Im}d_{n+1}\otimes M\to \mathrm{Ker}d_{n}\otimes M\xrightarrow{f}H_{n}(P\otimes M)\to \mathrm{Im}d_{n}\otimes M \xrightarrow{g}\mathrm{Ker}d_{n-1}\otimes M\to \cdots

For the short exact sequence

0ImfHn(PM)Kerg00\to \mathrm{Im}f\to H_{n}(P\otimes M)\to\mathrm{Ker}g\to 0

we compute Imf\mathrm{Im}f and Kerg\mathrm{Ker}g. From the snake lemma, we have the morphism Imdn+1MKerdnM\mathrm{Im}d_{n+1}\otimes M\to \mathrm{Ker}d_{n}\otimes M is δM\delta\otimes M, where δ\delta is the connecting morphism in the long exact sequence derived by 0KerdPImd00\to \mathrm{Ker}d\to P\to \mathrm{Im}d \to 0, i.e.

Imdn+1δKerdnHn(P)0Imdn\cdots\to \mathrm{Im}d_{n+1}\xrightarrow{\delta}\mathrm{Ker}d_{n}\to H_{n}(P)\xrightarrow{0}\mathrm{Im}d_{n}\to \cdots

Since M-\otimes M is right exact, the diagram is commutative with exact rows

Imdn+1¬MKerdn¬MHn(P)¬M0Imdn+1¬MKerdn¬MImf0»=»=

We have ImfHn(P)M\mathrm{Im}f\cong H_{n}(P)\otimes M.

On the other hand, we consider the short exact sequence

0ImdnKerdn1Hn1(P)00\to \mathrm{Im}d_{n}\to \mathrm{Ker}d_{n-1}\to H_{n-1}(P)\to 0

Using the long exact sequence theorem of Tor\mathrm{Tor}

Tor1(Kerdn1,M)Tor1(Hn1(P),M)ImdnMKerdn1M\cdots\to \mathrm{Tor}_{1}(\mathrm{Ker}d_{n-1},M)\to \mathrm{Tor}_{1}(H_{n-1}(P),M)\to \mathrm{Im}d_{n}\otimes M\to \mathrm{Ker}d_{n-1}\otimes M\to \cdots

To compute Tor1(Kerdn1,M)\mathrm{Tor}_{1}(\mathrm{Ker}d_{n-1},M), we consider the short exact sequence

0KerdnPnImdn00\to \mathrm{Ker}d_{n}\to P_{n}\to \mathrm{Im}d_{n}\to 0

Using the long exact sequence theorem of Tor\mathrm{Tor}

Tor2(Imdn,M)Tor1(Kerdn,M)Tor1(Pn,B)\cdots\to \mathrm{Tor}_{2}(\mathrm{Im}d_{n},M)\to \mathrm{Tor}_{1}(\mathrm{Ker}d_{n},M)\to \mathrm{Tor}_{1}(P_{n},B)\to \cdots

Since Imdn\mathrm{Im}d_{n}, PnP_{n} flat, Tork(Imdn,M),Tork(Pn,M)=0\mathrm{Tor}_{k}(\mathrm{Im}d_{n},M), \mathrm{Tor}_{k}(P_{n},M)=0. We have Tor1(Kerdn,M)=0\mathrm{Tor}_{1}(\mathrm{Ker}d_{n},M)=0. Notice Kerd0=P0\mathrm{Ker}d_{0}=P_{0}, we finally have

0Tor1(Hn1(P),M)ImdnMgKerdn1M0\to \mathrm{Tor}_{1}(H_{n-1}(P),M)\to \mathrm{Im}d_{n}\otimes M\xrightarrow{g}\mathrm{Ker}d_{n-1}\otimes M

So Kerg=Tor1(Hn1(P),M)\mathrm{Ker}g=\mathrm{Tor}_{1}(H_{n-1}(P),M). Finally

0HnPMHn(PM)Tor1(Hn1(P),A)0\to H_{n}P\otimes M\to H_{n}(P\otimes M)\to \mathrm{Tor}_{1}(H_{n-1}(P),A)\to

Theorem 2. For a PID RR, the exact sequence

0HnPMHn(PM)Tor1(Hn1(P),A)0\to H_{n}P\otimes M\to H_{n}(P\otimes M)\to \mathrm{Tor}_{1}(H_{n-1}(P),A)\to

splits.

Proof

Proof. Notice that for PID RR, the exact sequence

0KerdnPnImdn00\to\mathrm{Ker}d_{n}\to P_{n}\to \mathrm{Im}d_{n}\to 0

splits. After tensoring MM, the exact sequence

0KerdnNPnNImdnM00\to\mathrm{Ker}d_{n}\otimes N\to P_{n}\otimes N\to \mathrm{Im}d_{n}\otimes M\to 0

splits. So KerdnM\mathrm{Ker}d_{n}\otimes M is direct summands of PnMP_{n}\otimes M, i.e. the direct summands of Ker(dnidM)\mathrm{Ker}(d_{n}\otimes id_{M}). Quotient Imdn+1M=Im(dn+1idM)\mathrm{Im}d_{n+1}\otimes M=\mathrm{Im}(d_{n+1}\otimes id_{M}), we have Hn(P)MH_{n}(P)\otimes M to be the direct summands of Hn(PM)H_{n}(P\otimes M). ◻

Universal Coefficient Theorem for Cohomology

Theorem 3. For and object MM and a chain complex PP, if PnP_{n} and Imdn=dn(Pn)\mathrm{Im}d_{n}=d_{n}(P_{n}) projective for any nn, then we have the following sequence exact

0Ext1(Hn1(P),M)Hn(Hom(P,M))Hom(Hn(P),M)00\to \mathrm{Ext}^{1}(H_{n-1}(P),M)\to H^{n}(\mathrm{Hom}(P,M))\to \mathrm{Hom}(H_{n}(P),M)\to 0

Proof

Proof. Similar to universal coefficient theorem for homlogy. ◻

Theorem 4. For PID RR, the exact sequence

0Ext1(Hn1(P),M)Hn(Hom(P,M))Hom(Hn(P),M)00\to \mathrm{Ext}^{1}(H_{n-1}(P),M)\to H^{n}(\mathrm{Hom}(P,M))\to \mathrm{Hom}(H_{n}(P),M)\to 0

splits.

Proof

Proof. Similar to the proof for homology. ◻

Kunneth Formula

Lemma 2. For two chain complex OO, CC, if the differential
morphism of OO are the zero morphisms, then we have

Hn(OC)=iZHn(OiCi)H_{n}(O\otimes C)=\bigoplus_{i\in \mathbb{Z}}H_{n}(O_{i}\otimes C_{\bullet -i})

Proof. Notice that (OC)n=i+j=nOiCj=iZOiCi(O\otimes C)_{n}=\oplus_{i+j=n}O_{i}\otimes C_{j}=\oplus_{i\in \mathbb{Z}}O_{i}\otimes C_{\bullet -i} and the differential morphisms of OCO\otimes C are dn=i+j=n(1)iiddjd_{n}=\sum_{i+j=n}(-1)^{i}id\otimes d_{j}, i.e. we only have the vertical morphisms. So
Hn(OC)=iZHn(OiCi)H_{n}(O\otimes C)=\oplus_{i\in \mathbb{Z}}H_{n}(O_{i}\otimes C_{\bullet -i}). ◻

Theorem 5 (Kunneth Furmula). For two chain complex C,DC, D, if CnC_{n}, KerdnC\mathrm{Ker}d_{n}^{C}, ImdnC\mathrm{Im}d_{n}^{C} are all flat for nZn\in \mathbb{Z}, then we have the sequence exact

0i+j=nHi(C)Hj(D)Hn(CD)i+j=n1Tor1(Hi(C),Hj(D))00\to \bigoplus_{i+j=n}H_{i}(C)\otimes H_{j}(D)\to H_{n}(C\otimes D)\to \bigoplus_{i+j=n-1}\mathrm{Tor}_{1}(H_{i}(C),H_{j}(D))\to 0

Proof

Proof. Consider the exact sequence

0KerdiCCiImdiCC0\to \mathrm{Ker}d_{i}^{C}\to C_{i}\to\mathrm{Im}d_{i}^{C}\to C

Apply fuctor Dj-\otimes D_{j} on it, we have

0KerdiCDjCiDjImdiCDj00\to \mathrm{Ker}d_{i}^{C}\otimes D_{j}\to C_{i}\otimes D_{j}\to \mathrm{Im}d_{i}^{C}\otimes D_{j}\to 0

To form a double chain complex, we define di:KerdiCKerdiCd_{i}:\mathrm{Ker}d_{i}^{C}\to \mathrm{Ker}d_{i}^{C} and di:ImdiCImdi1Cd_{i}:\mathrm{Im}d_{i}^{C}\to \mathrm{Im}d_{i-1}^{C} to be the zero morphisms. So we have the exact sequence of tensors

0KerdCDCDImdCD00\to \mathrm{Ker}d^{C}\otimes D\to C\otimes D\to \mathrm{Im}d^{C}\otimes D\to 0

Use the long exact sequence theorem, we have the long exact sequence

Hn+1(ImdCD)Hn(KerdCD)Hn(CD)Hn(ImdCD)\cdots\to H_{n+1}(\mathrm{Im}d^{C}\otimes D)\to H_{n}(\mathrm{Ker}d^{C}\otimes D)\to H_{n}(C\otimes D)\to H_{n}(\mathrm{Im}d^{C}\otimes D)\to \cdots

From the lemma above

iZHn+1(ImdiDi)iZHn(KerdiDi)fHn(CD)iZHn(ImdiDi)giZHn1(KerdiDi)\cdots\to \bigoplus_{i\in\mathbb{Z}} H_{n+1}(\mathrm{Im}d_{i}\otimes D_{\bullet -i})\to \bigoplus_{i\in \mathbb{Z}}H_{n}(\mathrm{Ker}d_{i}\otimes D_{\bullet -i})\xrightarrow{f} H_{n}(C\otimes D)\to \bigoplus_{i\in \mathbb{Z}}H_{n}(\mathrm{Im}d_{i}\otimes D_{\bullet -i})\xrightarrow{g}\bigoplus_{i\in \mathbb{Z}}H_{n-1}(\mathrm{Ker}d_{i}\otimes D_{\bullet -i})\to \cdots

Via shifting the complex

{iZHn+1(ImdiDi)=iZHn(ImdiD+1i)=iZHn(Imdi+1Di)iZHn1(KerdiDi)=iZHn(KerdiD1i)=iZHn(Kerdi1Di)\left\{\begin{aligned} &\bigoplus_{i\in\mathbb{Z}}H_{n+1}(\mathrm{Im}d_{i}\otimes D_{\bullet -i})=\bigoplus_{i\in\mathbb{Z}}H_{n}(\mathrm{Im}d_{i}\otimes D_{\bullet +1-i})=\bigoplus_{i\in \mathbb{Z}}H_{n}(\mathrm{Im}d_{i+1}\otimes D_{\bullet -i})\\ &\bigoplus_{i\in\mathbb{Z}}H_{n-1}(\mathrm{Ker}d_{i}\otimes D_{\bullet -i})=\bigoplus_{i\in\mathbb{Z}}H_{n}(\mathrm{Ker}d_{i}\otimes D_{\bullet -1-i})=\bigoplus_{i\in \mathbb{Z}}H_{n}(\mathrm{Ker}d_{i-1}\otimes D_{\bullet -i})\end{aligned} \right.

So we have the long exact sequence

iZHn(Imdi+1Di)iZHn(KerdiDi)fHn(CD)iZHn(KerdiDi)giZHn(Imdi1Di)\cdots\to \bigoplus_{i\in\mathbb{Z}}H_{n}(\mathrm{Im}d_{i+1}\otimes D_{\bullet -i})\to \bigoplus_{i\in\mathbb{Z}}H_{n}(\mathrm{Ker}d_{i}\otimes D_{\bullet -i})\xrightarrow{f} H_{n}(C\otimes D)\to \bigoplus_{i\in\mathbb{Z}}H_{n}(\mathrm{Ker}d_{i}\otimes D_{\bullet -i})\xrightarrow{g}\bigoplus_{i\in \mathbb{Z}}H_{n}(\mathrm{Im}d_{i-1}\otimes D_{\bullet -i})\to \cdots

Consider the short exact sequence

0ImfHn(CD)Kerg00\to \mathrm{Im}f\to H_{n}(C\otimes D)\to\mathrm{Ker}g \to 0

We compute the short Img\mathrm{Im}g and Kerg\mathrm{Ker}g. For the short exact sequence

0Imdi+1KerdiHi(C)00\to \mathrm{Im}d_{i+1}\to \mathrm{Ker}d_{i}\to H_{i}(C)\to 0

we have the long exact sequence

Hn(Imdi+1Di)Hn(Kerdidi)Hn(Hi(C)Di)\cdots\to H_{n}(\mathrm{Im}d_{i+1}\otimes D_{\bullet -i})\to H_{n}(\mathrm{Ker}d_{i}\otimes d_{\bullet -i})\to H_{n}(H_{i}(C)\otimes D_{\bullet -i})\to \cdots

From the universal coefficient theorem

Hn(Imdi+1Di)=Imdi+1Hn(Di)H_{n}(\mathrm{Im}d_{i+1}\otimes D_{\bullet -i})=\mathrm{Im}d_{i+1}\otimes H_{n}(D_{\bullet -i})

Hn(KerdiDi)=KerdiHn(Di)H_{n}(\mathrm{Ker}d_{i}\otimes D_{\bullet -i})= \mathrm{Ker}d_{i}\otimes H_{n}(D_{\bullet -i})

so

Imf=iZCoker(Imdi+1Hn(Di)KerdiHn(Di))=iZHi(C)Hn(Di)=iZHi(C)Hni(D)\begin{aligned} \mathrm{Im}f&=\bigoplus_{i\in\mathbb{Z}}\mathrm{Coker}(\mathrm{Im}d_{i+1}\otimes H_{n}(D_{\bullet -i})\to \mathrm{Ker}d_{i}\otimes H_{n}(D_{\bullet -i}))\\&=\bigoplus_{i\in\mathbb{Z}}H_{i}(C)\otimes H_{n}(D_{\bullet -i})\\&=\bigoplus_{i\in \mathbb{Z}}H_{i}(C)\otimes H_{n-i}(D)\end{aligned}

Similarly,

Kerg=iZKer(Kerdi1Hn(Di)ImdiHn(Di))=iZTor1(Hi1(C),Hn(Di))=iZTor1(Hi1(C),Hni(D))\begin{aligned} \mathrm{Ker}g&=\bigoplus_{i\in\mathbb{Z}}\mathrm{Ker}(\mathrm{Ker}d_{i-1}\otimes H_{n}(D_{\bullet -i})\to \mathrm{Im}d_{i}\otimes H_{n}(D_{\bullet -i}))\\&=\bigoplus_{i\in \mathbb{Z}}\mathrm{Tor}_{1}(H_{i-1}(C), H_{n}(D_{\bullet -i}))\\&=\bigoplus_{i\in\mathbb{Z}}\mathrm{Tor}_{1}(H_{i-1}(C), H_{n-i}(D))\end{aligned}

Theorem 6. For PID RR, the short exact sequence splits.

Proof

Proof. Omitted. ◻

评论